It is ordered that the Jury Composition Rule is hereby adopted by this Court, effective
July 1, 2012, to read as follows:

JURY COMPOSITION RULE

1. Purpose. The purpose of the rule is to set reasonable standards for the preparation,
dissemination and improvement of inclusive statewide and county master jury lists.

2. Business Rules. The statewide and county master jury lists shall be compiled substantially in
accordance with the business rules set forth in Appendix A.

3. Inclusiveness. Each county master jury list should be no less than 85% inclusive of the number
of persons in the county population age 18 years or older as derived from the most recent
decennial census or county population estimate (Table B01001 as of the date of this rule) from
United States Census Bureau for the calendar year when the list is generated. The calculation
shall be made by dividing the number of persons in such master list by the county population age
18 years or older according to the applicable census data. In the event that such percentage is less
than 85%, the Council of Superior Court Clerks will provide the county data collected pursuant
to OCGA 8 15-12-40.1 and applicable census data so that the chief judge may make a prima
facie determination whether the list is fairly representative based upon:*

a. The findings of the Georgia Supreme Court in representativeness challenges;

b. The level of representativeness; and

c. The alternatives available to increase the inclusiveness of the list.

4. Certification.

a. Upon completion of the statewide and county master jury lists, the Council of Superior
Court Clerks or its list vendor shall certify to the Supreme Court that it has complied with the
business rules for preparation of the master jury list and that the county master jury lists do or do
not meet the inclusiveness threshold.

b. The Council of Superior Court Clerks or its list vendor shall provide written certification
of the county master jury list to each county after payment of the subscription invoice presented
to the county in conjunction with the delivery of the county master jury list as provided by
OCGA 8§ 15-12-40.1. This certification shall include:

I. The year the list was created;

ii. The name of the county;

iii. Certification that the business rules established by this court rule have been followed; and

iv. The percentage inclusiveness of the county master jury list as certified to the Supreme

Court.

5. The written certificate shall be provided to the trial court and shall be included in the trial
judge's report as required by OCGA 8§ 17-10-35 (a).

! See National Center for State Courts, Trial Court Performance Standards & Measurement System, Standard 3.2.3:
Representativeness of Final Juror Pool (last modified January 2005).
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6. Local clerks and jury commissioners shall not add or delete names from the county master
jury list, but may excuse, defer, or inactivate names of jurors known to be ineligible or
incompetent to serve pursuant to OCGA 8 15-12-1.1. The clerk of the board of jury
commissioners shall maintain a list of jurors excused, deferred or inactive who are not part of the
eligible juror array derived from the county master jury list.

7. All other issues of local jury management shall be as authorized by law or by local court order.

8. In the promulgation of this rule, the Court does not express any advisory opinion on the legal
sufficiency of compliance.

APPENDIX A: INCLUSIVE SOURCE LIST:
PROCESS AND BUSINESS RULES

PRIMARY RECORDS SOURCES

The following shall be used as the two sources of data for the creation of the statewide and
county master jury lists. Such sources are hereafter referred to as “Primary Records Sources.”

Department of Driver Services (DDS)

Records shall be secured from the Georgia Department of Driver Services (DDS). Such records
shall include data relating to all persons 18 years of age and older with any of the following:
(a) valid and expired driver's licenses,
(b) state issued personal identification documents, or
(c) records of in-state and out-of-state convictions for driving without a license, revocations,
and suspensions.

Secretary of State Voter Registration Records

Voter registration records shall be secured from the Georgia Secretary of State. Such records
shall include data relating to all persons registered to vote within the state, including persons
identified by the Secretary of State as “active” and “inactive.”

LIMITING RECORDS SOURCES

The following record sources shall be used as sources of data to be applied to the Primary
Records Sources to purge persons from the Primary Records Sources as indicated:

Department of Public Health Death Certificates

Death certification data shall be obtained from the Department of Public Health including data
relating to all current and past (15 years) Georgia death certificates. The certificates include first
name, last name, middle name, gender, date of birth, address/county of death, and county/address
of residence.



Records shall be purged from the Primary Records Sources relating to all persons found in the
death certificate file when such records match on each of the six fields stated below. Matching
shall be made using deterministic matching methods and the following fields:

1. County of Residence

2. Last Name

3. First Name (or use first four characters of name)

4. Middle Initial

5. Sex

6. Date of Birth

Secretary of State: List of Convicted Felons

A list of persons shall be obtained from the Secretary of State for all persons who have been
convicted of felonies in state or federal courts and who have not had their civil rights restored.
Felons shall be purged from the merged source file.

County Permanent Excusals

A request shall be made of each Superior Court Clerk or county jury clerk for an electronic
listing of all persons within such county who have been permanently excused or inactivated from
jury service as follows:
(a) such persons who have been permanently excused or inactivated due to mental and/or
physical disability; and
(b) such persons who are 70 years of age or older and who have requested and been granted
permanent excusals or inactivation from jury service as the result of their age.

Such listing shall include such data elements as specified by the Council of Superior Court
Clerks. Such listings shall be submitted by reasonable deadlines as determined by the Council.

Persons appearing on such lists presented in a timely manner shall be inactivated from the county
master jury list prior to delivery to each county; to the extent that local listings are not timely
submitted to the Council, the Council shall still provide a county master jury list.

This provision shall not limit the authority of the court to excuse or inactivate such persons
locally.

Source List Preparation and Business Rules

Compiling the sources is conducted sequentially after receiving the DDS, voter registration, and
death certificates. The following sections provide specific business and process description.



Data Filters

Prior to standardizing and clearing the eligible source list records, the first step is to purge
records from the DDS source data. The specific business rules guide pre-merge record purging.
Six fields are used to purge ineligible DDS records:

1. License Status

2. Personal ID Flag indicating (1) License or (2) Personal State Issued Identification

3. DDS Driver's License #

4. Address Date

5. Date of Document Expiration (License/ID)

6. DDS extraction date

The DDS data extraction date is not included as a data field but is needed to filter expired
licenses.

DDS Source Data Filter Rule #1:

Purge from the DDS data any record where the License Status equals “No License” and the
Personal ID/Licenses Flag equals “License.” Do not purge records where the Personal/ID field
equals “I”.

DDS Source Data Filter Rule #2:

Purge from the DDS data any record where:
(a) License Status = Expired and days since the expiration date is greater than 730 days, and
(b) Personal ID/License Field = “L” (License)

DDS Source Data Filter Rule #3:

Do not purge from the DDS data any record of a state-issued ID even if it appears expired.

DDS Source Data Filter Rule #4:

Purge from the DDS data duplicate record(s) when two or more records have the same Driver's
License ID #. The single record retained shall be the record containing the most recent:

(a) address date, or

(b) expiration date, or

(c) document issue date.

Voter Registration Filter Rule #5:

No filters are applied to the voter registration records (inactive voters remain in the final list).



Address Standardization and Cleaning

Name and address standardization procedure shall be performed prior to submission to the
National-Change-of-Address (NCOA) vendor or the vendor can authorize NCOA vendor to
perform these data cleaning services.

1. Apply software algorithms to extract, parse, and standardize voter/driver address from text
fields to ensure the address is consistent with the national United States Postal Service
(USPS) Address Information System (Postal Addressing Standards Publication # 28, April
2010).

2. Standardized addresses are matched to the USPS Address Information System to identify
potentially invalid addresses. Invalid addresses shall be identified but shall be retained.

3. If the address is missing a ZIP code or has the wrong county code, the USPS Automated
Address System is used to correct address components if possible (5-digit ZIP Code, add 4-
digit ZIP Code suffix, correct county code).

4. Although voter/driver records have separate first, last, and middle data elements,
standardization algorithms standardize special cases (hyphenation, apostrophes).

5. Ensure Georgia DDS county codes correspond to Georgia voter registration county codes.
Assign the Federal Information Processing Standards (FIPS) codes to all records (required in
subsequent steps to reconcile NCOA returns to DDS/Voter county codes).

National-Change-of-Address (NCOA) Processing

NCOA Rule #1: NCOA Service

1. The NCOA vendor must use the 48-month USPS NCOA database.

2. The selected NCOA vendor must do all processing in-house and cannot outsource any or part
of the DDS or voter file matching to other companies or entities.

NCOA Rule #2: NCOA Service

The NCOA vendor shall report whether a residence move is an out-of-state, intra-county, or
inter-county move. All records indicating out-of-state moves shall be purged. All records
indicating corrected intra-county moves shall be retained.

NCOA Rule #3: NCOA Service

Keep all records even if the NCOA match to the USPS valid address database flags the record as
invalid. This USPS address validity flag will be retained in the master source list for clerks to
verify accuracy over time using manual checks or returned jury summons. After one year, the
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clerks can evaluate the accuracy of the undeliverable flag to determine whether to purge these
records prior to compiling the list.

Identifying Duplicate Records

Apply “Probability Linking Methods” as described below.

Unlike the deterministic approach which requires an exact match on some or all fields,
Probability Records Linkage (PRL) methods use the statistical properties of a record pair to
calculate the probability that the records apply to the same person. Exact matches on all the
fields are therefore not required. The PRL method allows for both agreements and disagreements
among matching fields between two records. PRL takes into account the probability that the
matching field, such as the birth month, agrees by chance alone, even if the record pair is not the
same person.

For example, suppose birth month is used as one of the matching fields. What is the chance that
any pair of records from the voter and driver's license files will have same birth month, even if
the two records are not the same person? For the sake of simplicity, let's say that there is an 8%
(1/12) chance of agreement on birth month by chance alone, even if the records belong to
different people. The power behind PRL becomes more apparent when using a combination of
matching fields, such as the surname. The somewhat unusual name “Wilenski” will carry a much
higher matching weight than “Smith,” which is a very common name. For both the voter and
driver's license databases, the frequencies (probabilities) are computed or each value in each of
the matching fields. When all agreements and disagreements among these fields and their
corresponding weights are computed for each record pair, it is possible to make statements as to
the likelihood that the record pair in fact represents the same person.

Identifying Duplicate Records: Methodology

The PRL methods to be used rely on the Fellegi-Sunter (1969) framework to compute odds ratios
(see Section 2.1 in the attached article) and a limited Bayesian Model (see Section 3.1). The
matching methodology does not apply the full Bayesian Model as described in Section 4.1.

Although the Fellegi-Sunter framework will provide an odds-ratio, it is very difficult to identify
an optimal cutting point in terms of successful and unsuccessful matches without manual review.
Additionally, odds-ratios do not translate easily into practical interpretation, making it difficult to
describe record matching success.

For this reason, the limited Bayesian Model shall be used to convert likelihood ratios (match
weights) by converting these estimates into Bayesian posterior probabilities. The limited
Bayesian formulae permit computation of an actual probability stating the likelihood that the
record pair is indeed a link.



For a complete description, see the attached article: McGlincy, A Bayesian Record Linkage
Methodology for Multiple Imputation of Missing Links. The references in this article also provide
the citations for the supporting matching research (Fellegi-Sunter, Newcombe, and Winkler).

Identifying Duplicate Records: PRL Model Parameters

Blocking Fields:

1. County

2. Gender

3. Last Name (Soundex)
4. Year of Birth

Matching Fields:

1. Last Name

2. First Name (with one typo permitted)
3. Middle Name (first three characters)
4. Birth Day

5. Birth Month

6. Birth Year

Probability Level: 90% or higher

Identifying Duplicate Records: Selecting the DDS or Voter Registration Records between
Two Linked Records

Among record pairs that meet or exceed the 90% probability level, the following business rules
are used to select the record (DDS or voter) with the best information. In most cases, the voter
registration record will have the most recent and complete data in terms of street address so the
voter registration record will be selected as the primary record among duplicates. However, this
may not always be the case. If so, the following rules apply.

1. Conduct a field-to-field comparison between the two linked records to identify missing data
and inconsistent data, such as different addresses.

2. Use DDS address-change date and/or date of license issue and compare these dates to the
address and voter date-of-last-contact date. The source record with the most-current dates
will dictate what address is used as the selected address.

The statewide master jury list and the county master jury lists shall contain at least the following
fields:

1. Last Name
2. First Name



3. Middle Name

4. Birth Day

5. Birth Month

6. Birth Year

7. Residence Address (including City, ZIP Code and County)

8. Mailing Address (including City, ZIP Code and County) if not the same



A Bayesxan Record Linkage Methodology for Multiple Imputatlon of

Missing Links

Michael H. McGlincy

Strategic Matching, Inc.
. PO Box 334, Morrisonville, NY 12962
" Phone 518 643 8485, meglinevmi@stratesicmaiching.com

ABSTRACT

Probabilistic record linkage can be an effective research technique even if available records lack strong
personal identifiers or if identifying fields contain many errors or omissions. Traditional methodologies
typically select a single set of linked record pairs for research based on a match weight test statistic and
clerical review of marginal pairs. However, missing links (false negatives) can make such datasets
unrepresentative of the total population of true linked pairs. The methodology described here addresses
this problem. A full Bayesian model is developed for the posterior probability that a record pair is a true
match given observed agreements and disagreements of comparison fields. Observed-data posterior
distributions for model parameters and true match status are estimated simultaneously through MCMC data
augmentation with parallel chains. This process gives multiple complete representative sets of imputed
linked record pairs. Population estimates can be obtained from each imputation and conselidated using
established techniques. Application of linkage imputation by a consortium of traffic safety researchers is

described.

KEY WORDS: Bayesian, Record Linkage, Multiple Imputation

1. BACKGROUND

- The National Highway Traffic Safety Association
(NHTSA) supports the Crash Qutcome Data Evaluation
System (CODES) program in order to leam about medical
consequences of motor vehicle crashes, CODES grantees
in 30 states link police crash reports to medical treatment
records for all crashes in those states and all injured
vehicle occupants. Unique identifiers for persons and
events are not available in most CODES datasets.
Consequently, CODES researchers use probabilistic
record linkage techmiques to create linked datasets for
analysis (Jaro, 1995; Runge, 2000).

Police crash reports ‘are linked to ambulfance run
reports from EMS agencies, emergency department or
inpatient treatment records from hospitals, or death
records from a state vital statistics office (McGlincy et al.,
1994; Vemnon ef al., 2004). Most crash records do not
link to treatment records because most occupants are
uninjured. Most treatment records do not pertain to crash
victims because there are many other reasons for EMS or
hospital treatment. CODES researchers catry out
frequency-based linkage precedures using commercial
software available for that purpose (Jaro, 1992;
McCGiiney, 2003). Linking such records can be
problematic: Datasets of interest usually do not include
strong personal identifiers or identifiers are not made
available in order to protect patient confidentiality.
Furthermore, data quality may be degraded by high levels

of nonresponse or misreporting (Greenberg, 1996),
Analysts can never be certain about the true match status
of any pair of records.

Fellegi and Sunter (1969) suggest a theoretical
framework for record linkage under such conditions of
uncertainty. In principle, analysts select a single set of
linked record pairs that can be treated as the set of sll true
matched pairs for all practical purposes. In practice, the
true disposition of many record pairs might be apparent
only afler detailed clerical review of information not
captured in a computer file or coded in a record linkage
model. When clenical review is not feasible because of
the lack of identifying data or other program limitations,
resuiting linked datasets can be characterized by few false
positives but many false pegatives, or missing links.
Those record pairs which happen to have kigh likelihood
of being true matches may not be representative of the
total population of true matches. For example, if crashes
in rural areas involving elderly drivers are less commnon
than crashes in urban areas involving young drivers then
record pairs for rural eidetly would be assigned higher
likelihoods in frequency-based linkage models than pairs
for urban young. This issue is of particular interest to the
consortium of CODES researchers because characteristics
of available data vary substentively from member to
member. Analysis results based on linked datasets from
different. members cannot easily be compared or
combired in a meta-analysis unless they are all
representative samples from underlying populations.



The problem. of missing links is similar to the
problem of nonresponse in surveys, Cases which happen
to have complete data may not be representative of the
underlying population. . Bayesian thultiple imputation is a
standard techinique for analyzing incomplete data (Little
and Rubin, 2002; Schafer; 1997). -Multiple imputation is
used to correct for missing data in CODES datasets and in
other NHTSA programs (Rubin, ef al., 1998). Here we
treat the true match status of all pairs of records as
missing data and use the iterative technique of Markov
Chain Monte Carlo (MCMC) daia augmentation to draw
from a Bayesian posterior distribution for the missing
match status, We also draw from posterior distributions
for parameters of the linkage model.

In Section 2 we summarize the frequency-based
linkage model that serves as the framework for CODES
linkage projects. An optimal linkage rule based on
likelihood ratios is used to select record pairs for analysis.
In Section 3, we describe a feasibility test of Bayesian
linkage imputation with CODES datasets. . CODES
researchers in fen states conducted test linkage projects
and obtained results that suggest linkage imputation can
correct for missing links. In the test, a limited Bayesian
model was used to estimate posterior probabilities for a
true match given the likelihood ratios described earlier.
In Section 4, we extend the methods described in Sections
2 and 3 while maintaining continuity with prior CODES
work by developing full Bayesian models for estimating
required population characteristics and the true match
status of comparison pairs. In Section 5, we describe
areas for future work.

Others researchers have assumed different record
linkage models (see, for example, Belin and Rubin, 1995;
Fortini et al., 2001, 2002; Larsen, 1999 and 2003; Larsen
and Rubin, 2001; Winkler 1988, 1989, 1993, 1994). Most
of these other models consider two comparison outcomes:
agree or not agree, where the latter oulcome includes
missing values. The frequency-based model described
here considers a broader sct of comparison outcomes:
agreement on specific values, disagreement, or missing,
Furthermore, the model includes misreporting and is
easily extended to linking three or more files.

Misreported data can introduce bias by attenuating
estimates of associations between explanatory variables
and outcome variables (Gustafson, 2000). False positive
matches (incorrect links) act like misreported data in this
respect. This is of particular concern with linkape
imputation because each imputed dataset necessarily
includes a higher level of false positives. Methods for
correcting this bias have been proposed (Lahiri and
Larsen, 2000; Larsen, 2003; Scheuren and Winkler, 1993,
1997). This issue is not considered further here,
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2. RECORD LINKAGE WITH AN OPTIMAL
LINKAGE RULE

2.1 Record Linkage Framework

Fellegi and Sunter (1969) - suggest a general
theoretical framework for record linkage: Computer
records in two files, L, and Ly, are generated as samples
from two populations, A and B, respectively. The
problem is to identify those pairs of records pertaining to
the same jndividual. Such record pairs are calied matched
and all other record pairs are called ynmatched. Recorded
characteristics on paits of records are compared.
Comparison pairs are classified according to a decision
rule as a link if the records are probably for the same
individual, a non-link if the records are probably not for
the same individual, or a possible link if there is not
sufficient evidence for a positive classification at
specified error Jevels. An optimal linkage rule minimizes
the need for clerical review of possible links. The optimal
rule ranks comparison pairs by a test statistic m/, where
m is the probability of observing a given comparison
outcome on a matched pair and « is the probability of
observing the same outcome on an unmaitched pair.
Logx(m/) is called a match weight. Pairs with weights
above a cutoff value are classified as links, Pairs with
weights below z second, lower cutoff are non-links. Pairs
with weights between the cutoff vatues are possible links.

2.2 Practical Implementation

Fellegi and Sunter (1969) suggest simplifications for
practical implementation of their theory. Comparison
fields are conditionally independent on the sets of
matched and unmatched pairs. Comparison outcomes are
limited to agreements on a specific value, disagreements,
or missing values. Prior knowledge is assumed about
each comparison field. For concreteness, suppose that
one comparison field in files L, and Ly is a person’s age,
Let pa, Pn, and pup be probabilities of observing specific
ages in populations A, B, and ANB, respectively. Let e
and ey be probabilities for missing ages for populations
A and B, respectively. Let e, and ep be probabilities for
misreported ages for populations A and B, respectively,
Let ey be the probability of correct ages being reported
differently for population B than for population A.
Method I gives the following rules for calculating m and
probabilities, given the model parameters (Fellegi and
Sunter, 1969, pp. 1192-1193),

m (age agrees and is the j* listed age) =
Panj {1 —€a)(1 — es)(1 - en)(1 - eag)(l — &)

m (age disagrees) =
[1 (1 —ea)(1-ea)(1 - en)](1 - eao)(1 ~ eag)

m (age missing on either file) =
1 {1 —eao)(1 - ego)



u (age agrees and is the j” listed age) =
Pa; Pr; {1 —€a)(1 —ep}1 -~ ex)(1 - eao)(1 — eno)

" u(age disagrees) =
[1=(1~ea)(1-ep)1—er) Z; pa; prl(] ~ eao)1 -

gg)

u (age missing on ejther file) =
1 —(1—epn)(1 - epo)

Fellegi and Sunter note that under appropriate conditions
the proportions pagj, Paj » and pe; may be estimated from
the data files themselves. CODES linkage projects use
maximum likelihood estimates of population proportions,

3. A FROOF OF CONCEPT FOR LINKAGE
IMPUTATION

31 A Limited Bayesion Model

The current CODES linkage methodology includes a
limited Bayesian model so that CODES researchers can
compare the guality of their linked record pairs in terms
of posterior probabilities rather than likelihood ratios or
match weights. The model is specifically designed to
provide the same ranking of comparison record pairs
using any of these measures.

For a given record pair (a,b) and compatison result
vector v for (a,b), let M be the hypothesis that the pair is
matched and U that the pair is unmatched. The set of all
observed comparison vectors 'y = fy(a,b), {ab) in
LaXLg} can be considered as arising from a mixture of
comparison vectors from two classes, matched and
unmatched pairs (Larsen , 1999), so that

P(¥(a,b)) = P(y(a,b} | M) P(M) + P(y(a,b) | J) P(U)).

The observed-data likelihood for the set of all observed
comparison vectors is

P(Cag) = [Tiar PCr(a,b)).

We assume the latent class or conditional independence
model (Larser and Rubin, 2001) in which the comparison
outcome for any field & on record pair (a,b} is independent
of the comparison outcomes for other fields. In this case,
the conditional probability of observing comparison
vector y{a,b} given class H = M or U is the product of K
independent conditional probabilities for the comparison
outcomes for each of X comparison fields

P(y(a,b) | H) =[x P(yi(a,b) | H), H=M or U.

For Bayesian inference about true status of pair (a,b),
we apply Bayes’ rule for odds (Gelman ef al,, 1995, pp.
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7-10). the posterior odds for M given vy are the product of
the likelihood ratio and the prior odds.

Odds(M | y(a,b)) = P(M | v(a,b)) / B(U | ¥(a,b)) =
(P(y(a,b) | M)/ P(y(a,b) | U)) (PQM) / P(U)) =
(T Plrela,b) | M) / TTi Plvadasb) | U) (B(M) / P(U)) =
(I P(nda,b) | M) / P(nfa,b) | Uy} (POM) / PU)) =
(T mufa,b) 7 ula,b)) (POM) / PU)).

Conditional probabilities m(ab) and wuwfab) are
calculated for each pair (a,b) and each field k= 1, ..., ¥
given y(a,b) using the rules in Section 2 just as in a non-
Bayesian linkage. Given posterior odds for M, the
corresponding posterior probability is

P(M | y)=0dds(M | v) / (1 + Odds(M | 7).

For 2 non-imputed linkage, all high probability pairs are
selected for analysis, say Odds(M | y(a,b)) > 9 or B(M |
Ta,b)) > 0.9

We assume an informative prior distribution for the
odds based on substantive data: the number of records in
the samples L, and Lg and the number of records in
LaNLg (ie., tree matched pairs). This is feasible for
CODES linkages (and many others) because datasets of
interest include information about which records should
match. For example, hospital records include codes
which indicate whether a patient’s injuries resulted from a
motor vehicle crash. We assume no uncertainty about the
prior odds so that a poini estimate suffices;

Odds(M) =Nu/ Ny = Nu / (Na Ng — Nw),

where Ny is the number of matched pairs, Ny is the
number of unmatched pairs, N, is the number of records
in A, and Np is the number of records in B.

Point estimates are assumed for all components of the
mode! parameter € = (pa, P, Pap, a0s E20» €4, €8, Sap).
Consequently, imputed linkages do not reflect uncertainty
in 0. Population proportions pa, pp, €as, and ez, for each
field are set equal to ebserved sample proportions, the
MLE values. pag, €a, e, €ap for each field are set based
on prior knowledge and adjusted after inspection of those
record pairs classified as matched in a preliminary
linkage.

3.2 A Proof of Concept

In order to test the potential of Bayesian imputation
for finding missing links, sefected researchers conducted
the same [inkage project following two different
methodologies. First, reseatchers identified the set of
high probability links (P(M | 1) > 0.9) between police
crash reports and hospital discharge recerds as usual
Second, researchers obtained five imputed sets of links
between the same two datasets. For each imputed



linkage, 4 uniform random deviate X in (0,1) was
generated- for ¢ach comiparison pair and the pair was
included the imputation if POM | ) > X.

3.3 Linkage Imputation Results

Figure | illustrates typical linkage imputation results.
This. figure shows a histogram of match weights for
Imputation I for the test linkage projects conducted by
one CODES state. Here & linked pair with match weight
near 22.4" has a posterior. probability near 0.9 and the
histogram intérval for the mods is 19 to 21. High weight
counts are essentially the same from imputation to
imputation because most high probability links are drawn
in most imputations. Low weight counts show more
variation because most low probability links are drawn in
at most one imputation,
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Figure 1. Match Weight Histogram
for Imputation 1

3.4 Comparison of Linkage Results

As shown in Table 1, CODES researchers reported .

that the percent of linked pairs found that had posterior
probabilities greater than 0.9 was consistently less than
the estimated total number of pairs based on prior
knowledge (41% to 70% of estimate). The number of
imputed licked pairs was spproximately equal to the
estimated number (91% to 111% of estimate), suggesting
that Bayesian linkage imputation can account for all
missing Jinks.

Table 1
Number of Linked Pairs Found
as a Percent of Prior Estimates
CODES Percent of Prior Estimate
Swte . Post, Prob. > 0.9  Imputation 1
A 41% 91%
B 56% 111%
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C 46% 94%
D 56% 91%
E 55% 105%

F 0% 95%
G 44% 108%
H 69% 97%

I 59% 92%

J 61% 106%

4. A FULL BAYESIAN MODEL FOR RECORD
LINKAGE

4.1 The Full Model and Data Augmentation
Procedure

This full Bayesian model corrects shoricomings in
the limited model used for the proof of concept. Let 6=
(DA, PB, PaB. ©a0, €Ro, €A, €n, €ap) be & vector parameter
consisting of all of the unknown probabilities needed for
the model described in Section 2. Let Yyar be a vector
indicating the missing true match status, I = matched and
0 = unmatched, for each record pair (a,b) in the Cartesian
ptoduct LAX Lg. Let YOBS = {LA, Lg, TAB} be the
observed data where L, and Ly arc representative samples
of records from populations A and B, respectively, and
[ap is the set of comparison vectors y(a,b) for each record
pair (ab) in L, X Lp. Denote the posterior distribution for
Bayesian record linkage as

P, Ymar| Yors) =
P(Pa, Pe: Da, €40, €80, €4, €1, €an, YaaT | La, L, Tan).

We simulate random draws from P(6, Ywmar | Yops)
following the Markov chain Monte Carle technique of
data augmentation (Schafer, 1997, pg. 72, repeated here
with notational changes);

Given a current guess 8(7) of the parameter, first
{the I-step] draw 2 value of the missing data from
the conditional predictive distribution of Yyar,
Yuar (#+1) ~ P(Ymar | Yoss, 8(2)). Then [the P-
step], conditional on Ypur(#+1), draw a new
value of 8 from its complete-data posterior,
8(z+1) ~ P(8 | Yops, Ymar(#+1)). Repeating this
sampling from a starting valee 8(0) yields a
stochastic sequence {8(f), Yuar(® : t= 1,2, ...}
whose stationary distribution is P(8, Yuar |
Yoss), and the subsequences {0(s) : £=1,2, ...}
and {Yyar{f) 1 £=1,2, ...} have P(0] Ypag) and
P{(Ymar | Yons} as their respective statiomary
distributions.

We use paraliel chains from the same starting value &(0)
tc genecrate multiple independent linkage imputations.
0(0) includes MLE values for py, pg, €40, and gy



42 Data Augmentation I-step

- For Béjesian imputation of the true classification of
- pair (a,b), M:or U, we again apply Bayes’ mule for odds as
shown in. Section 3

Odds(Yuar(a,b) = 1| y(a,b), 8(5)) =
T (mig(a,b) / ue(a,b)) P(M) / P(U),

whete the product is over all comparison fields k= 1, ...,
K and the conditional probabilities my(a,b} and u(a,b) are
calculated using the rules in Section 2. Note that the
posterior odds and the likelihood ratio both depend on
(a,b) but we assume that the prior odds do not.

As in the limited model, we choose an informative
prior distribution for the odds based on substantive data.
The limited model assumes a point estimate for the prior
odds but for the full model we assume a lognormal
distribution centered at the point estimate:

log P(M) / P(U) ~ N(log{Nap / (NA N ~ Nap)), o).

We draw from the distribution for the prior odds once at
the beginning of each I-step because the prior odds do not
depend on (ab).

Given Odds(Yuar{a,b) = 1 | v(a,b), 6{s)), the posterior
probabitity is

P(Ypar(ab) =1 y(a,b}, 8(H) =
Odds(Ymar(a,b) = 1 | ¥ab), 6())/
1+ 0dds(Ymar(a,b) = 1 | v(a,b), (/).

We draw from P{Ymar | Yoss, 0(t)) = P(Yuar | s, 8(1)
by drawing from a uniform random deviate X in (0,1) for
each (a,b) and setting Yyar(a,b) = 1if

P(YMAT(a:b) =1 ? T(arb): B(t)) >X.
4.3 Data Augmentation Pustep

Fellegi and Sunter model data drawn from
populations A, B, and ANB as 3 XK independent
multinomial distributions with known parameters pa(%),
pe(i), and pag(h), £ = 1, ..., K. The vector values
parameter for each multinomial gives probabilities of
observing each possible value of a comparison field in a
sample from a population. For each field, nonresponse
(missing values) and misreporting (incorrect values) are
assumed to occur independently in the data capture
process, completely at random.  Probabilities of
nonresponse {eao(k) and epo(k)) and of misreporting
{ealk), ep(k), and e,p(k)) are assumed to be known for all
comparison fields £ = 1, ..., K. These probabilities are
assumed to be independent of field valnes.
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In practice, 8 = (Pa, PB, Pan, €a0, €80, Sas €8, Can) MEY
not be known a priori—we only have- independent
samples from populations A and B, and, through the
MCMC data augmentation procedure, from population
ANB produced in each I-step. All of the samples may
include nonresponse and misreporting. Consequently,
there is uncertainty about the true value of 8 caused by
sampling, nonresponse, and misreporting that should be
modeled when drawing O(t+1). In the Bayesian
methodology described here, posterior distributions for all
components of B given Yops and Ywmar are independent
becanse of the use of the latent class model and the
assumption of prior independence of the components, All
posterior distributions can be estimated using established
techniques.  Successive draws from the independent
posterior distributions for the components of 8 produce a
draw from the full posterior distribution of 0.

43.1  Bayesian Models for pa, pa, €4s, €50

We apply the same Bayesian analysis independently
for each comparison fleld £ = 1, ..., ¥ in sample L, from
pepulation A and for each comparison field k=1, ..., K
in sample Ly from population B. The approach here
closely follows examples presented in Little and Rubin
(2002, pp. 98-99, 114115, and 120-121). The analysis
is shown only for one field & in sample L, but the analysis
for other fields and samples is similar.

Denote field & in sample L, as Lo(£). Suppose La(k)
= (¥1, .-, Yna)" Where y is categorical and takes one of C
possible values ¢ = 1, ..., C. Let n. be the number of
observations for which y; = ¢, with ¥n, = N,
Conditional on N,, the counts {n;,, ..., ng) have a
multinomial distribution with index N, and probabilities
palk) = (my, ..., #c), ®e > 0, ¥om, = 1. The likelihood is
proportional to the distribution of LA(k) given pa(k)

f(LA(R) | pak)) = €n! / T ne?) [T =

For Bayesian inference, assume a Dirichlet prior
distribution with vector parameter {o.} for the parameters
of the multinomial model:
Plm, ..., ) o [l ™

If a prior sample for field & from population A is available
set g equal to the number of prior observations for which
y: = ¢ for all ¢. Otherwise, assume a proper non-
informative prior distribution with o, = 1 for all ¢. The
Dbirichlet is a conjugate prior distribution for parameters
of the multinomial model. Combining this prior
distribution with the likelihood yields the posterior
distribution as Dirichlet with vector parameter {n. + o.}:

P(m, .., e | Lalk)) o [lom™ =7,



Suppose the sample La(k) is incomplete, observed for
O4(k). units and missing for Ma(k) = Ny — Oa(k) unifs.
Denote the observed units in La(k) as Lopg(k) and the
missitg umts a5 :Lags(k)  so that L,(0) = {Loas(®),
ng(k)} Let n; be the fumber of observations for which
yi = ¢, with Ecnc “Oalk). Conditional on Qu(k), the
counis- (ny, ... nc) have g multinomial distribution with
index Oa(k) and probabilities pa(k) = (m, ..., nc). The
likelihood  ignoring - the missing-data mechanism is
proportional to the distribution of Lops(k)} given pa(k),
which is

f(Lows(k) | patk)) = (Oa(R}! / TTe ne!) [T =™

Now consider the missing-data mechanism. Let R(%) =
Ry, ..., Rya)' measure nonresponse in sample LA(k),
where R, 0 for observed units and R, = 1 for missing
units, We assume each unit in sample La(%) is missing
with probability e,(k) independent of La{k). Then the
distribution of R(%) given LA(k) and esq(k) is

RR(E) | La(R), eac(l) =
(Na! / Oa(H)! MACRID) (1 — capl)°A® er A0

The likelihood not ignoring the missing-data mechanism
is proportmnal to the joint distribution for Lops(k) and
R{k) given pa(k) and eaq(k)

AL oas(k), REK) | PaCK), epof) =
(NA! 7 Oa(R)! MA(EY) (1 — eag(®))%® e (MM %
{OA()! / TTe ) Th 7.

Missing data are Missing at Random (MAR) because we
agsume they are Missing Completely at Random
(MCAR). Consequently, as shown by Little and Rubin
(2002, pp. 120-121), if pa(%) and eap(k) have independent
priors P(pa(k)) and Q(es0(k)) then Bayesian inferences
about pafk) can be based on P(p,(k)) and the ignorable
likelihood proportional to f{Lons ! pa(k)). The only effect
of missing data is to decrease the effective sample size
from N, to O,(k). Bayesian inferences about eaq(k) given
Na and Oufk) can be based on Qen(k)) and the
likelihood proportional to KR(X) [ esfR)). With a
binomial model for nonresponse and an independent Beta
prior distribution for eas(k) we obtain a Beta posterior
distribution for eae(k).

The sample La(k} may contain misreported data. In
general, any value can be misreported as any other value
and a full treatment of misreported data is beyond the
scope of this paper. We assume incorrect values in field &
are indistinguishable from correct values and are drawn
independently from the same distribution as correct
values (same pa(k)). In this case, inferences about ps(k)
can be based on all cases in Logs, ignoring the fact that
some values are incorrect. Note that if some incorrect

values were distinguishable from correct values then we
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could remove those incorrect values f()r'infercnees about
Pa(#) with decreased effective sample sizé.

We simulate draws from Dirichlet or Beta posterior
distributions using a related standard gamma distribution
(Schafer, 1997, pg. 249), designated G(a) with parameter
a > 0. For each level ¢ of a comparison field, simulate
drawing v, from G(n, + a.) where 1, is 4n observed count
and o, is a prior count (we take o, = 1 if prior counts are
not available). Then (v, /v, v2/ Tv,, ..., v/ Tv,)isa
simulated draw from the Dirichlet posterior with vector
parameter {n;+ o).

43.2  Bayesian Models for p,y, ¢4, €3, €4

We estimate the postertor distribution for pAB(k)
given Yops and Ypup(r+1) by applying procedure in
Section 4.3.1 independently for each comparison field £ =
1, .., K in a sample L,p from population ANB., The
sample for each comparison field consists of those record
pairs in Ly X Lp classified as matched in Yyyur(#+1) with
agreements op the values of field & in Tay.

We cannot estimate posterior distributions for e,(k),

ep(k), and esp(h) g:ven Yops and Ypar(t+1) by dn'ectly
analyzing those pairs Lo XLy classified as matched in
Ymar{s+1)} with disagreements on the values of field % in
Tsp. When a comparison field & disagrees for some frue
matched pair one caunot determine by inspection whether
the disagreement should be atiributed to incorrect
reporting in Ls{k) with probability e,(k), incorrect
reporting m Lg(k) with probability eg(k), or correct but
different reporting in L,(k) and Lg(k) with probability
eas(k). For convenience, we let e{k) be the consolidated
probability of misreporting defined by

1 —ex(k) = (1 - eath)) {1 - en(k)) (1 — ean(h)

and estimate only the posterior distribution for e{k) given
Yons and Yumar{#+1). With our other assumptions, this
has no important effect on caleulated m and «
probabilities because e4(k), ea(k), and exa(k) occur only in
the product (1 - ea(8)) (1 — es(k)) (1 - ean(k)). We
assume a binomial medel for misreporting with an
independent Beta prior distribution for er{f) and obtain a
Beta posterior distribution for ex(k).
433  Convergence of Posterior Distributions
Convergence to statjonarity of posterior distributions
of interest is not guaranteed when applying the MCMC
data augmentation procedure. Recommended techniques
for diagnosing convergence suggest comparing results
from parallel chains with dispersed starting values
(Gelman et al., 2000, Little and Rubin, 2004; Schafer,
1997). These :echmques have not yet been implemented
for this model. Instead, we monitor important summaries
of the distributions by inspection. Given our assumptions,



model parameters pa(k), pe(k), eao(k), and epy(k)
describing comparison field % in populations A and B will
be- drawn from their respective stationary distributions
after the first iteration. Of course, this may not be the
case for model parameters pas(k) and er(k) describing
comparison field % in population ANB, or for Yyar, the
true matched status of each record pair. We choose to
monitor - the combined emror rate eT(k) for each
comparison field & as well as Ny, the number of record
pairs classified as true matches in Yyar. Preliminary test
results using data from one CODES state suggest that
convergence may occur quickly as shown in Table 2.

Table 2
Monitored Statistics for Assessing Convergence
of Posterior Distributions

Monitored  MCMC Iteration for Imputation 1
Statistic 1=0 (=2 t=4 t=20
eT(1) 0.19 0.12 0.12 0.12
eT(2) 0.19 0.20 0.21 0.22
eT(3) 0.19 0.05 0.04 0.04
€T(4) 019 009 006 006
eT(5) 0.19 0.10 0.07 0.07
eT(6) 0.19 0.03 0.02 0.02
eT(7) 0.19 0.17 0.16 0.16
_Nu 8000 9,676 9,184 9,140
433  Selecting Comparison Pairs

Only those record pairs in I'ys with agreement on at
least one important comparison field are examined as
comparison pairs because of practical limitations on
computing time. Two or more independent match passes
are performed, each joining files L, and Ly on different
fields to produce potentially different sets of comparison
pairs. The union of unique comparison pairs from all
passes is used to draw samples from ANB. Only
comparison pairs with posterior probabilities greater than
0.001 or some other low value established by worst-case
analysis of the record generation process are included in
the union. Pairs with lower posterior probabilities are
assumed to be unmatched.

5. AREAS FOR FUTURE WORK

Linking Simulated Data.  Different linkage
modeling approaches will be compared by linking
simulated data as in Fortini et al, (2001, 2002) and
Larsen (1999, 2003).

Measuring Goodness of Fit. There is often a choice
of alternate comparison variables for linkage models
including variables with coarsened data. Area under ROC
curves has been used as an overall measure of goodness
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of fit for logistic regression models and might be suitable
for linkage models.

Modeling Misreporting Mechanisms. More
realistic misreporting mechanisms will be modeled.
Imputed samples of linked pairs and three-file links will
be analyzed to estimate model parameters,

Varying Prior Odds for a Match. Newcombe
(1995) suggests that prior odds for a true match might
vary depending on personal characteristics. For example,
an elderly driver might be more likely to be treated in a
hospital than a young driver,

Expanding the Number of Linked Files. CODES
analysts often link more than two files to build a full
medical history for crash victims. The formulas in
Section 2 will be expanded to cover links between three
or more files with similar comparison outcomes.
Candidate multiples will be found by conducting
traditional pair-wise links.

Comparing Dependent Fields. Independence of
comparison fields is measured by calculating uncertainty
coefficients, information entropy based measures of
association. When dependent comparison fields are used
then their combined match weights for agreements will be
reduced by the amount of common information.
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